FOOD TECHNOLOGY I

<table>
<thead>
<tr>
<th>MODULE</th>
<th>CONTENT</th>
<th>YEAR</th>
<th>TERM</th>
<th>CREDITS</th>
<th>TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Food Technology</td>
<td>Basics of Food Technology</td>
<td>3º</td>
<td>1º</td>
<td>6</td>
<td>Compulsory</td>
</tr>
</tbody>
</table>

LECTURER(S)
- María del Carmen Almécija Rodríguez
 - mcalmeci@ugr.es
 - http://sl.ugr.es/mcalmeci

DEGREE WITHIN WHICH THE SUBJECT IS TAUGHT
- Degree in Food Science and Technology

PREREQUISITES and/or RECOMMENDATIONS (if necessary)
- Students should have passed the following subjects: Basics of Food Engineering and Unit Operations in the Food Industry.

BRIEF ACCOUNT OF THE SUBJECT PROGRAMME (ACCORDING TO THE DEGREE ??)

GENERAL AND PARTICULAR ABILITIES

OBJECTIVES (EXPRESSED IN TERMS OF EXPECTED RESULTS OF THE TEACHING PROGRAMME)
- Select variables of heat treatment necessary for microbial thermal inactivation.
- Identify alternative sterilization technologies such as irradiation, high-pressure processing and pulsed electric field processing
- Calculate refrigeration systems, including mechanical refrigeration cycle.
- Design preservation systems by reducing the water activity such as drying, freeze-drying and evaporation.
- Describe materials and types of packaging suitable for various foods.

DETAILED SUBJECT SYLLABUS

THEORETICAL TOPICS:

1. Thermal processing

2. Low temperature technologies for preservation
Irradiation. High-pressure processing. Pulsed electric field.

3. Freezing
Low temperature production: mechanical refrigeration cycle, enthalpy diagram, refrigerants. Refrigeration: heat transfer under unsteady state, calculations of common terms used in refrigeration system design. Freezing: freezing curve, freezing kinetics.

4. Dehydration

5. Packaging

PRACTICES:
Laboratory Practices

READING

RECOMMENDED INTERNET LINKS