UNIT OPERATIONS IN FOOD INDUSTRY

<table>
<thead>
<tr>
<th>MODULE</th>
<th>CONTENT</th>
<th>YEAR</th>
<th>TERM</th>
<th>CREDITS</th>
<th>TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Food Technology</td>
<td>Basics of Food Technology</td>
<td>2º</td>
<td>1º</td>
<td>6</td>
<td>Compulsory</td>
</tr>
</tbody>
</table>

LECTURER(S)

Antonio Raúl Pérez Gálvez (Lectures)
Nor Elena Rahmani Manglano (Laboratory)

Dr. Raúl Pérez Gálvez, Department of Chemical Engineering, Faculty of Sciences, +34 958243360, rperezga@ugr.es
MSc Nor Rahmani Manglano, Department of Chemical Engineering, Faculty of Sciences, +34 958241329, norelemarm@ugr.es

DEGREE WITHIN WHICH THE SUBJECT IS TAUGHT

Degree in Food Science and Technology

PREREQUISITES and/or RECOMMENDATIONS (if necessary)

Students should have passed the following subject: Basics of Food Engineering

BRIEF ACCOUNT OF THE SUBJECT PROGRAMME (ACCORDING TO THE DEGREE ???)

GENERAL AND PARTICULAR ABILITIES

OBJECTIVES (EXPRESSED IN TERMS OF EXPECTED RESULTS OF THE TEACHING PROGRAMME)

- Identify types of fluids from a rheological point of view and the rheological measures necessary.
- Resolve fluid flow systems employing conservation equations in different flow regimes.
- Calculate heat transfer systems, including heat exchangers, considering the mechanisms involved.
- Design, from mass transfer mechanisms, distillation and solid-liquid extraction operations.
DETAILED SUBJECT SYLLABUS

THEORETICAL TOPICS:

1. **Rheology**
 Rheological classification of fluids: newtonian fluids, non-newtonian fluids. Variables which influence on the rheological parameters. Rheological measures: rotational viscometers, tube viscometers.

2. **Fluids flow**

3. **Heat transfer**

4. **Mass transfer**
 Mass transfer mechanisms: diffusion, convection. Distillation: liquid-vapor equilibrium, simple distillation, rectification. Solid-liquid extraction: extraction equilibrium, single-stage extraction, multistage extraction.

LABORATORY PRACTICES:

1. Tube and shell heat exchangers.
2. Friction losses through pipes and fittings.
3. Pump characteristic curve.
4. Viscosity measurement using Cannon-Fenske viscosimeter.

READING

RECOMMENDED INTERNET LINKS

- **Conversion units**: http://www.thermexcel.com/english/tables/unit_con.htm
- **Tools for pump selection and performance**
 - http://impeller.net/spaix.asp?LGG=en